6 period moving average
Moving Average Este exemplo ensina como calcular a média móvel de uma série de tempo no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Você gosta deste site gratuito Por favor, compartilhe esta página no GoogleMoving Average Forecasting Introduction. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução interessante a algumas das questões de computação relacionadas à implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nas suas pontuações dos testes num curso em que vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para sua pontuação próxima teste Independentemente de Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis esperar que você comece algo na área do 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para que eles desenvolvam uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre suas espertinas. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você tem obtido um 85 e um 73, então talvez você deve figura em obter cerca de um (85 73) / 2 79. Eu não sei, talvez se você fez menos Festejando e werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. quot Ambas estas estimativas são realmente as previsões médias móveis. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. A segunda também é uma média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todo mundo a fazer suas predições sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados na seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isto é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsõesquot porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são utilizados para cada previsão. Mais uma vez incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel do período m, ao fazer previsões quotpast, note que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis Dim Item Como Variante Dim Counter Como Inteiro Dim Acumulação como Único Dim HistoricalSize As Inteiro Inicializando variáveis Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação / NumberOfPeriods O código será explicado na classe. Você quer posicionar a função na planilha para que o resultado da computação apareça onde ele deve gostar do seguinte. Na prática, a média móvel fornecerá uma boa estimativa da média das séries temporais se a média for constante ou mudar lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo medirá os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série de tempo usada para ilustração juntamente com a demanda média a partir da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ele aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então ele se torna constante novamente. Os dados são simulados adicionando à média um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o número inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que a qualquer momento, apenas os dados passados são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas juntamente com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas da média móvel para a direita por períodos. Uma conclusão é imediatamente aparente a partir da figura. Para as três estimativas, a média móvel está aquém da tendência linear, com o atraso aumentando com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um tempo específico no valor médio do modelo eo valor médio predito pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e viés do estimador da média são dados nas equações abaixo. As curvas de exemplo não correspondem a essas equações porque o modelo de exemplo não está aumentando continuamente, em vez disso, ele começa como uma constante, muda para uma tendência e, em seguida, torna-se constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada deslocando as curvas para a direita. O atraso e o viés aumentam proporcionalmente. As equações abaixo indicam o atraso e o viés de um período de previsão para o futuro quando comparado aos parâmetros do modelo. Novamente, estas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel baseia-se no pressuposto de uma média constante, eo exemplo tem uma tendência linear na média durante uma parte do período do estudo. Como as séries de tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para tais resultados. Podemos também concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menor. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero ea variância do erro é composta por um termo que é uma função de e um segundo termo que é a variância do ruído. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com média constante. Este termo é minimizado fazendo-se o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar a previsão responsiva às mudanças, queremos que m seja o menor possível (1), mas isso aumenta a variância do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de Previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo add-in para os dados da amostra na coluna B. As primeiras 10 observações são indexadas -9 a 0. Em comparação com a tabela acima, os índices de período são deslocados por -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usados para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro de média móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto a partir da média móvel no tempo 0 é 11.1. O erro é então -5.1. O desvio padrão e o Desvio Médio Médio (MAD) são calculados nas células E6 e E7 respectivamente.6.2 Médias móveis são 40 elecsales, ordem 5 41 Na segunda coluna desta tabela, é mostrada uma média móvel de ordem 5, fornecendo uma estimativa de O ciclo tendencial. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993) o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores para os dois primeiros anos ou últimos dois anos porque não temos duas observações de cada lado. Na fórmula acima, a coluna 5-MA contém os valores de hat com k2. Para ver como é a estimativa do ciclo tendencial, traçamos o gráfico juntamente com os dados originais da Figura 6.7. Lote 40 elecsales, principal quotResidential vendas de eletricidade, ylab quotGWhquot. Observe como a tendência (em vermelho) é mais suave do que os dados originais e captura o movimento principal da série de tempo sem todas as pequenas flutuações. O método da média móvel não permite estimativas de T em que t está próximo das extremidades da série, portanto, a linha vermelha não se estende para os bordos do gráfico em qualquer lado. Mais tarde usaremos métodos mais sofisticados de estimativa de tendência-ciclo que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa de tendência-ciclo. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito da alteração da ordem da média móvel para os dados de vendas de eletricidade residencial. As médias móveis simples como estas são normalmente de ordem ímpar (por exemplo, 3, 5, 7, etc.). Isto é assim que são simétricas: numa média móvel de ordem m2k1, há k observações anteriores, k observações posteriores e a observação do meio Que são médias. Mas se m fosse uniforme, não seria mais simétrico. Médias móveis de médias móveis É possível aplicar uma média móvel a uma média móvel. Uma razão para fazer isso é fazer uma média móvel de ordem uniforme simétrica. Por exemplo, podemos pegar uma média móvel de ordem 4 e, em seguida, aplicar outra média móvel de ordem 2 aos resultados. Na Tabela 6.2, isto foi feito para os primeiros anos dos dados da produção de cerveja trimestral australiana. Beer2 lt - window 40 ausbeer, início 1992 41 ma4 ltm 40 beer2, ordem 4. center FALSE 41 ma2x4 ltm 40 beer2, ordem 4. center TRUE 41 A notação 2times4-MA na última coluna significa um 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel de ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451,2 (443410420532) / 4 e 448,8 (410420532433) / 4. O primeiro valor na coluna 2times4-MA é a média destes dois: 450,0 (451.2448.8) / 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), é chamado de média móvel centrada de ordem 4. Isto é porque os resultados são agora simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. Fim É agora uma média ponderada das observações, mas é simétrica. Outras combinações de médias móveis também são possíveis. Por exemplo, um 3 x 3 MA é frequentemente utilizado e consiste numa média móvel de ordem 3 seguida por outra média móvel de ordem 3. Em geral, uma ordem par MA deve ser seguida por uma ordem par MA para torná-lo simétrico. Similarmente, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimativa do ciclo de tendência com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo de tendência a partir de dados sazonais. Considere o 2x4-MA: fracasso do chapéu frac14y frac14y frac14y frac18y. Quando aplicado a dados trimestrais, cada trimestre do ano recebe igual peso, uma vez que o primeiro eo último termo se aplicam ao mesmo trimestre em anos consecutivos. Conseqüentemente, a variação sazonal será média e os valores resultantes de hat t terão pouca ou nenhuma variação sazonal restante. Obter-se-ia um efeito semelhante utilizando uma mistura de 2 x 8-MA ou 2 x 12-MA. Em geral, uma m-MA 2x é equivalente a uma média móvel ponderada de ordem m1 com todas as observações tomando peso 1 / m, exceto para o primeiro e último termos que tomam pesos 1 / (2m). Portanto, se o período sazonal é par e de ordem m, use um m-MA de 2x para estimar o ciclo tendencial. Se o período sazonal é ímpar e de ordem m, use um m-MA para estimar o ciclo de tendência. Em particular, um 2 x 12-MA pode ser usado para estimar o ciclo de tendência de dados mensais e um 7-MA pode ser usado para estimar a tendência-ciclo de dados diários. Outras escolhas para a ordem do MA normalmente resultarão em estimativas de ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamento elétrico A Figura 6.9 mostra uma 2 x 12-MA aplicada ao índice de ordens de equipamentos elétricos. Observe que a linha lisa não mostra sazonalidade é quase o mesmo que o ciclo de tendência mostrado na Figura 6.2 que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Plot 40 elecequip, ylab quotNovas ordens indicequot. Col quotgrayquot, main quotred 41 Química média ponderada As médias combinadas das médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a um 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, uma m-MA ponderada pode ser escrita como hat t sum k aj y, onde k (m-1) / 2 e os pesos são dados por a, dots, ak. É importante que todos os pesos somem a um e que sejam simétricos para que aj a. O m-MA simples é um caso especial onde todos os pesos são iguais a 1 / m. Uma grande vantagem das médias móveis ponderadas é que elas produzem uma estimativa mais suave do ciclo tendencial. Em vez das observações que entram e que deixam o cálculo no peso cheio, seus pesos são aumentados lentamente e então lentamente diminuídos resultando em uma curva mais lisa. Alguns conjuntos específicos de pesos são amplamente utilizados. Alguns deles são dados na Tabela 6. 3. Métodos das Médias Móveis Os comentários estão apagados Suponha que existam períodos de tempo indicados por e os valores correspondentes da variável são. Em primeiro lugar temos de decidir o período das médias móveis. Para séries temporais curtas, usamos período de 3 ou 4 valores. Para séries longas, o período pode ser 7, 10 ou mais. Para séries de tempo trimestrais, sempre calculamos médias tomando 4 quartos de cada vez. Nas séries mensais, são calculadas médias móveis de 12 meses. Suponha que a série de tempo dada seja em anos e nós decidimos calcular a média móvel de 3 anos. As médias móveis denotadas são calculadas como abaixo:
Comments
Post a Comment